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Experimentally Verifiable Modeling of
Coplanar Waveguide Discontinuities

Vesna Radisi¢, Dag R. Hjelme, Aileen Horrigan, Zoya Basta Popovi¢, and Alan R. Mickelson

Abstract— A general technique for obtaining the frequency-
dependent scattering parameters of open waveguiding structures
is discussed. The first step of the analysis is an iterative solution
for the charge distribution on the electrodes which, in our case,
uses the “straight line” solution, the one first derived by Maxwell,
as the starting value. A calibrated optical sampling technique
allows for direct verification of the validity of the quasi-static
charge distribution for structures in which the dielectric layers
are also electrooptic. (Common waveguiding dielectrics such as
GaAs and InP are sufficiently electrooptic to yield more than
sufficient signal-to-noise ratios for accurate verification.) In cases
where the quasi-static solution is valid, it is shown that the full
dynamics of the propagation problem can be recovered from
an equivalent nonuniform transmission line, the parameters of
which can be determined from the phase velocity and impedance
distribution defined by the static charge distribution. Here, we
present analysis of planar discontinuities in coplanar waveguides
(CPW), but the method can be modified and applied to include
active devices, as well as three-dimensional discontinuities, such
as airbridges. The method is based on an iterative solution of the
quasi-static charge distribution using successive over relaxation
and the dynamics are introduced via the Riccati equation. Ad-
ditional measurements performed on the “in-house” fabricated
passive circuits using an HP8510 Network Analyzer verify the
accuracy of the dynamical part of the method.

I. INTRODUCTION

LTHOUGH TRANSMISSION line-models of open

waveguide circuits can be quite efficacious, in many
circumstances, real circuits with discontinuous and (possibly)
closely spaced lines will also exhibit parasitics and line-to-line
coupling, and in such cases, transmission line models break
down. The parasitic effect is really caused by interaction of
charge accumulations (largest near charge singularity points),
which affect the continuous Maxwell charge distribution along
the line. Coupling greatly complicates circuit equivalents of
passive lines, while perturbations to charge distribution affect
circuit values. An example of an unexpected result is that of
a double stub tuner [1]. In such a case, however, it appears
a circuit equivalent is available [2]. It is not at all clear that
circuit equivalents even exist in stripline configurations which
do not exhibit strict reciprocity.
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Circuits that one practically wishes to consider usually
contain active elements. In order for active elements to func-
tion at microwave frequencies, their dimensions must be
small compared to the wavelength. The linewidths of the
interconnections of stripline circuits are generally made to
conform to the 50 € requirement and further to allow one
to couple on and off the substrate. Microstrip lines must,
therefore, be of the order of tens of microns. Although coplanar
lines can scale and have impedances almost independent of
substrate thickness, coupling requirements generally dictate
characteristic dimensions of tens of microns. Due to limited
carrier mobilities, the dimension of a transistor gate length
is on the order of fractions of a micron. Total gate widths
and, therefore, total device lengths are limited to tens (at most
hundreds) of microns. Compactness requires that the external
passive transmission lines taper rapidly down to the (sub)
micron gate lengths. The typical dimensions for a parasitic
coupling length is determined by some number of linewidths
(one or two) of the passive line. One can conclude from these
previously described considerations, that an active element is
quite generally strongly parasitically coupled to its feedlines,
and therefore its behavior (both linear and nonlinear) will be
strongly dependent on the details of the local metallization.

Commercial software available at present, generally in-
cludes parasitics using transmission-line circuit models in
conjunction with various discontinuous junction modes that
can be inserted into the transmission lines (see, for example,
the operating manual for HP’s Microwave Design System).
Such software packages generally include active elements
through fitting the S-parameters to an assumed circuit model
of a given complexity (which could include nonlinear circuit
effects) and using this model in an overall circuit model of the
system. Such models are phenomenological and can depend
only weakly on the details of device geometry through the
complex functions (S-parameters) determined for a given set
of bias conditions. There also exist physics based programs
which treat in detail the geometries and doping levels of each
of the internal layers of the active region [3], [4]. Many of
these models are restricted to two dimensions due to excessive
run times. Even those which can run truly 3-D geometry have
problems including the metallization layers. Neither ohmic
nor Schottky barrier contacts, although commonly in use for
decades, are well understood in terms of their effects on
electron streams. If the effect of coupling the internal electron
and hole streams is taken into account at all in a physical
model, it is generally done by including multiple fitting
parameters to fit to a given set of measured S-parameters [4].
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Again, the details of the all-important parasitic couplings due
to the details of the metallization are completely lost in this
process.

There are really two problems hindering progress in the
parasitic modeling area. One relates to the long computer time
necessary to run either full wave models or physical charge
flow models. Although it is generally argued that computer
cycle times will decrease ad infiritum and therefore floating
point operations per second will increase infinitely in the
future, there is a competing effe:t. This effect is related to
the restrictive assumptions that ¢lready go into the “exact”
modeling techniques. There is a tendency for one to ever
lift limitations on metallization thickness, current producing
geometries, etc. as more computer power becomes available.
Increased program complexity tends to offset increased run
speed. It is not clear what happens to the ultimate predictability
of physical effects.

A second hindrance to progress in the parasitic modeling
arena has to do with the incompatibility of full wave analysis
with physical modeling of the solid state effects. Above and
beyond the complexity of modeling of ohmics and Schottkeys
is the problem of trying to use a full wave approach for only a
portion of a fully coupled region. Maxwell‘s equations cannot
be solved exactly in such a case. One needs shields to separate
the space into distinct regions or to model the whole of the
coupled space. The physical device models suffer deficiencies
on the other side. These models calculate charge transport
and the local current and voltage effects induced by the
transport. Such analysis ignores totally the effecis of external
dc and ac fields induced by parasitics and partially shielded
by complicated metallization and doping distributions.

In this paper, we present a numerically efficient model
which holds the promise for being eventually capable of taking
parasitics into account in active circuits. The present work
concentrates on quasi-static moclels of coplanar waveguide
(CPW) structures. The goal is tc develop a model which is
stepwise experimentally verifiable, and can be used to propa-
gate an electromagnetic disturbance through a CPW structure.
In a future work, we plan to include active devices through
phenomenological models which have been determined from
optical sampling and HP8510 mcasurements used in concert
with this numerically efficient algorithm.

There are many computer aided design (CAD) tools avail-
able for analysis of microstrip circuits. One quasi-static tech-
nique for analysis of microstrip circuits is presented in {5]. In
general, quasi-static techniques should be » times faster than
full wave techniques, where n is the number of frequency
points, if both techniques are optimized. Quasi-static tech-
niques are valid up to a certain frequency and this frequency
limit depends on the type of the coplanar structure and its
geometry. For CPW, the characteristic impedance and effective
dielectric constant depend on the ratio of the widths of the
inner conductor and the gaps and are almost independent of
the substrate thickness. Therefor:, the transverse dimensions
of a CPW can be chosen to be very small compared to
the wavelength. The quasi-static analysis of CPW structures
should be valid even for very high frequencies. CPW offers
several other advantages over cornventional microstrip lines: it
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facilitates easy integration of shunt and series circuit elements,
and it eliminates yield limiting backside processing, such
as wafer thinning and via etching. These advantages make
CPW well suited for monolithic microwave integrated circuits
(MMICs), even though their application to present has been
rather limited. This is partly due to a lack of CAD tools
for CPW circuits, as compared with the tools available for
analysis of microstrip circuits. Furthermore, little information
is available in the literature on discontinuity models for
CPW [6]. Even though there are an increasing number of
characterization techniques becoming available [7]—[9], most
of these are based on full-wave analysis which require large
amounts of computer time and memory. Therefore, further
development of simple and accurate modeling tools for CPW
discontinuities is necessary.

The most common experimental verification of the quasi-
static or full wave techniques is based on the use of a network
analyzer. However, such measurements can yield only terminal
characteristics, giving S-parameters after proper deembedding.
Direct electrooptic sampling [12] can provide much more
detailed information than network analyzer measurements can
alone. Recent advances in electrooptic sampling allow one
to obtain accurate 2-D potential distributions on planar mi-
crowave circuits [13].

The analysis technique presented in this paper was moti-
vated by the 2-D electrooptic sampling measurements pre-
sented in [13]. Since our technique uses the 2-D potential
distribution to compute the 2-D charge distribution, direct
electrooptic probing seems to be an ideal tool to use as
a verification of our analysis. The 2-D quasi-static charge
distribution on the discontinuous transmission line is then
transformed into an equivalent nonuniform transmission line.
Since the quasi-static current distribution has zero divergence,
a unique local coordinate system on the center conductor can
be defined from the current field lines and their normals [5}.
This defines a curvilinear coordinate system of the equivalent
transmission line. The transmission line parameters are then
expressed in terms of the static charge distribution. The
propagation along the equivalent transmission line, therefore,
recovers the full dynamics of the scattering problem from the
static charge distribution. As the transmission-line problem is a
one-dimensional one, the increase in the computation time due
to this step is negligible compared to the quasi-static solution.

In problems involving waveguiding structures, there are two
natural length scales: the wavelength of the radiation and
the size of the guide. At microwave frequencies, the strip
width of the internal conductors of the guide is generally
much smaller than the wavelength of the guided radiation.
Where this is not the case, the structure could act more as a
radiating structure than as a waveguide. In our case the fields
can be well described by a static field analysis {10]. Further,
in the case of an ideal structure, the charge distribution of
approximately static charges is well known from the early
work of Maxwell [11]. Therefore, our analysis starts from
an assumed or measured 2-D potential distribution on the
center conductor and the ground planes of the circuit. Using
a static Green’s function, the surface charge distribution is
found from this potential. The corresponding capacitance is
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then calculated by integrating the charge distribution over
the surface of the inner conductor. For any line that can be
considered as a transmission line, knowledge of either the
capacitance or inductance is sufficient for computing all line
parameters including phase velocity and line impedance.

II. THE QUASI-STATIC APPROXIMATION

The field solution to the discontinuity scattering problem
possesses two scales. Near the discontinuity, the fields vary
rapidly on a scale w, where w is the largest transverse
dimension of the connecting lines, and then vary slowly with
an O()) scale, where A is the free space wavelength of the
exciting radiation, away from the discontinuity. The presence
of these multiple scales can be used to derive an accurate
approximations to the full wave problem [14].

A. A Multiple Scale Expansion

To perform a multiple scale expansion of Maxwell’s equa-
tions, we introduce two scaled coordinates

= 7w 1)
= 7k )

where k = 27/ Aegr, and Ao is the effective wavelength on
the transmission line. Introducing an expansion parameter

a=kw 3)
we can expand the electric field as [14]

E(r) = EQO@ vy + aED (")
+ OézE(z)(’f‘l,T”) +oe (4)

A similar expansion is used for the magnetic field. The del-
operator can be written as

v = g V' +av”] 6))

where the primed and double primed operators operate on
v’ and 7", respectively. Introducing the scaled coordinates
and field expansions into Maxwell’s equations and collecting
orders of o, we obtain a multiple scale expansion of the field
equations. The Oth-order terms (a®) show that E(®) and H(®
satisfy the static Maxwell equations in the coordinate 7.

By introducing a new curvilinear coordinate system defined
by the static field lines, and neglecting all longitudinal field
components in this coordinate system, the first-order terms
(o) show that E© and H(® satisfy the source free Max-
well equations in the coordinate r”. These equations can be
written as

6 o\ _ . w ©)

ue (hlE1 )_z—k hhy Hy (6)
8 (0) . we 0)

_8u3 (h2H2 ) =1 _]{} h3h2E1 (7)

where h; are the metric coefficients of the curvilinear co-
ordinate system wu;. The coordinate system is chosen such
that E© is tangential to @ and H(© is tangential to @o.
us is the coordinate axis normal to the E® and H® field
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lines. Equations (6) and (7) can be transformed to the standard
transmission line equations by defining a line voltage as the
line integral of E(®) from the center conductor to the ground
plane, and a line current as the line integral of H ®) around
the center conductor. The capacitance C and inductance L per
unit length can be computed from the static fields as well.

B. The Quasi-TEM Approximation

By neglecting the longitudinal field components, we have
used the same approximation as in the quasi-static approx-
imation of transmission lines with a nonuniform dielectric
constant. As suggested by our multiple scales expansion, and
as has been shown for uniform transmission lines [15], [16],
for low enough frequencies of operation, the z components
of E and H fields are small enough to be neglected. A low
enough frequency is defined as a frequency that produces a
wavelength large compared to the transverse dimensions of the
structure, i.e., a small o« parameter. We are considering a CPW
structure, for which the inner conductor and the gap width do
not exceed 200 pym. Since GaAs has a dielectric constant of
about 13 and we are working with the impedances of about
50 €, frequencies up to approximately 40 GHz will not violate
the quasi-static approximation. For higher frequency operation,
one could decrease the inner conductor and gap width in order
to minimize the radiation loss.

The propagation constant and characteristic impedance of
quasi-TEM lines can be expressed as

B=wVIC 8)

Zo = \/g ©)

Since the phase velocity of a TEM mode is always given
by vpr = ¢/\/€eg, L and C are related by the expression
LC = poeocesr, and therefore the knowledge of one of
them is sufficient to determine all line parameters including
the impedance.

Under the qausi-static approximation, an effective dielectric
constant is given by €.z = C/Cy, where C' is the capacitance
per unit length of the structure, and Cy is the capacitance per
unit length of the structure with air replacing all dielectric
materials. The propagation constant of the line can then
be written

(10)

where ¢ is the speed of light in vacuum. The characteristic
impedance of the line can be calculated from

ZTEM(Z) = w—é’% .

(11)

In the previous discussion we assumed quasi-TEM propa-
gation, but it can be shown that the generalized transmission
line theory holds for non-TEM propagation as well [18], [19].
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C. Static Charge Distribution
In the quasi-static approximation, the 2-D potential distri-
bution V(r) is related to the charge distribution o(r) by
Vir)= / G(r,r)o(r')d%r (12)
s
where G(r,r’) is the static Green's function for the potential

due to a charge on the surface S of a semi-infinite dielectric
with dielectric constant ¢, [20]

1 1
G(r,r") = o —
(r,r) dmepeas [P — /| (13)
where
1
Eeff = b (1+es). (14

The Green’s function can be found for many other cases.
In case of the finite substrate thickness the Green’s function
is given by [20]
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Fig. 1. A coplanar waveguide discontinuity.

where o(z, £L) is the charge distribution per unit length on the
transmission lines connected to the discontinuity, and G+ and
GW are the Green’s functions relating the charge distribution
in the exterior region to the potential in the interior region
|z] < L and |z| < W. These functions are given by

Gi(z,r',2) =

¢ e —1\" 1
Gl ') = — ( : )
() Teg(es + 1) g—:_o €+ 1 lr — v — 2nde,|
(15)

where e, is a unit vector in y direction and d is the thickness
of the substrate. As the Green’s function will be eventually
represented numerically in the computer program, the only real
question as to how it is representec! analytically, is how rapidly
this analytical representation can be translated to a numerical
one (the matrix filling problem). For cases as complicated
as those of multiple dielectric layers, it can be shown that
extremely efficient matrix filling ;echnique can be developed
[23]. It is our belief that such efficient techniques can also be
found for Green’s function for multiple dielectric layers where
the charges may be located away from the interface [24], that
is cases involving air bridges, etc.

The total area S can be reduced by noting that far away from
the discontinuity the charge distribution will remain essentially
unperturbed by the presence of the discontinuity. The charge
distribution in these areas can thus be assumed to be known.
By dividing the area as shown in Fig. 1, (12) can be written

L w
V{(x,2) =/L dz' /W dz' G(z,7', 2,7 )o (2, 2')

+ Volsxt(xa Z) (16)

where V. is the potential in the discontinuity region due to
the known charge distribution far away from the discontinuity.
Vext{z, z) can be expressed as

)
V;xt(x’ z) :/ dz' G + :x,m',z)o(:c’, —L)
-0

+ / dzr’' G — (z,2’,2)o(z’, L)

—o0

-w
+ / de’' W (z,2', 2)o (', —L)

-0

+/ dz' GV (z,2', 2)o(z',—L) (17)
w

-1
pr— In{(L+2)+ \/(L +2) 4 (x — )’ (18)
GY(z,a',2) =
B (O B [ e e &
ATepeos (19)

(L+2)+/(L+2° + (@ — o)

In writing [17] we have assumed that the charge distribution
for z € [-L, L] and |z| > W is equal to o(z,£ L) for z > 0
and z < 0, respectively. We can now rewrite (16) as

L W
Vint(, 2) :/ d7 / dr' G(z,2', 2,2 Yo (5, 2') (20)
-r -w

where Vip, = V — Vi is the actual potential on the conductors
minus the potential due to the charges in the exterior region.
The solution of (20) provides the static charge distribution
at the CPW discontinuity. The capacitance per unit length is
computed using [17]

C(z) = % / ) lo(z, 2)| dz

where z is the direction of propagation.

eay

III. NUMERICAL TECHNIQUE

We reduce the integral equation (20) to a matrix equation
by using point matching [22]. The motivation for doing point
matching is the fact that optical sampling measurements give
values for the potential at discrete points. Further, in the case
where we wish to find the charge distribution from the known
voltage distribution on the electrodes, we can always pick the
known voltages to exist at fixed points. We set

V()= vnb(r—ry) 22)

and expand the charge distribution as

o(r) = Zanf("' - Tn) (23)
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where f(r) = rect(z/dz ) rect(z/dz) and dz and dz define
the cell size. The resulting matrix equation takes the form

24)

where [o] is the unknown vector which contains the solution
for the charge density and [V] is the vector which contains the
voltages on the electrodes. [G] is the known Green’s function
matrix with elements

QT Ty Zns 2m) dx d2 m#mn
dx dz

zZ Z 2
et L+ V@701

+31—m1n<j—:+ (Z—:)Z+1)} m=n.
(25)

The unknown 2-D charge distribution can now be found by

simply inverting G m

o] = 617" V). (26)
The matrix inversion can easily be performed using LU
decomposition. However, since we are dealing with a 2-D
problem the size of the matrix soon becomes very large (an
N x N grid results in an N2 x N2 matrix) and large amounts
of computer time and storage are needed.

The problem at hand seems very well suited for more
efficient iteration techniques [21], [25]. The static charge
distribution will often deviate only slightly from a charge
distribution composed of 1-D distributions given by the cross-
sectional line dimensions at every z coordinate. This distribu-
tion can be used as initial value for an iteration technique. In
order to solve [V] = [G][o] with a given initial approximation

o(® we used the Gauss—Seidel iterative algorithm with over-
relaxation (SOR) [25]

o) = (1 - Q)Y

=1—1 (k-1 N k
G

@7

where the superscript denotes the iteration number and 2
is a relaxation parameter. If [G] is strictly diagonally domi-
nant, then for any choice of [06(?)] this algorithm gives a
sequence [a(’“)]fzo that converges to the unique solution of
[G][o] = [V] [25]. Overrelaxation parameter values close to
1.5 resulted in rapid convergence for the particular problem
considered here.

Since we defined the charge distribution using rectangu-
lar functions

C(z) =

>

inner cond.

o(z, 2) (28)

and the TEM impedance follows from (11).
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IV. SCATTERING PARAMETERS

With the quasi-static analysis presented above, we have
reduced the problem of propagation in a nonuniform CPW
structure to a one dimensional problem of TEM propagation on
a continuous nonuniform transmission line. The transmission
line equations are easily solved using a number of different
techniques. They can be transformed to Riccati equations
for the reflection and transmission coefficients [26], [27].
Alternatively, they can be transformed to equations for the
forward and backward travelling wave variables and then
solved using transmission matrices for piecewise uniform
transmission lines.

A. The Riccati Equations

By transforming the transmission line equations to Riccati
equations, the scattering parameters of the structure can be
found by solving the Ricatti equations for the reflection r(z, f)
and transmission #(z, f) coefficients [28], [32]

T — -japieirte) - (1= r(07) LE o)
LE) i) +riante) T2 LE o

These equations are solved as initial value problems with
initial values r(—L) = 0 and ¢#(—L) = 1, and integrated from
—L to L, to find S11(f) = r(L, f) and Sy2(f) = t(L, f).
The other two matrix elements, S25 and S3;, can be found by
integrating from L to —L with initial values (L) = 0 and
L) = 1

The Riccati equations are discretized by approximating the
equivalent nonuniform line with a piecewise uniform trans-
mission line. For this discrete case the Riccati equations are
easily solved by defining the local reflection and transmission
coefficients at a point 2 = 2,1

_ Zin—1— Zn
2 Zn—IZn
Tn = —Zn—l 7. (32)

where Z,, is the TEM impedance of line section n. The initial
value problems are solved according to

ot ra e
= 1t pur 1e2PA
 Tptp_1edfA

1 + p'n,'f'n—leja’gA

n

(33)

tn (34)
where (3 is given by equation (10) and A = z, —z,_;. Region
0 is connected to a matched load and we, therefore, have the
initial values ro = 0 and ¢ = 1. The values for the resulting
reflection and transmission coefficients determine the S7; and
S12, respectively. Similarly, starting the integration from the
other port, we can get Sa2 and Si».

B. Transmission Matrix

If the complete S-matrix is needed, it is perhaps easiest to
transform the problem to a transmission line network with V
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N

N.I% /

7

- >

[2

Fig. 2. A CPW test structure, where g1 = 86 pm, w; = 120 pm, go =
46 pm, w2 = 200 pm, and ! = 500 pm were the dimensions for the
measured structure. .

cascaded sections, and use the transmission matrix to compute
the overall S-matrix. The definitior. of a 7" matrix and formulas
for conversion to S-parameters and vice verse can be found
in the literature [29]. The transmission matrix 7; of the ith
section can be written as

1 [ eifA  pemifa
(7], = P [piejﬂA ;—jﬁA . (35
The total transmission matrix is then
[ =[] 7);- (36)

?

Using the transformation relationship between S-parameters
and T-parameters
1 [Tie TiTze —Ti2T

S = — 37

1= g | Tt @
the complete S-matrix for the CPW structure can be found.
The reference planes are left at the end of the interior region
(at £L), however, they can be shifted by adding the proper
phase factors.

V. APPLICATION TO THE DOUBLE
STEP-IN-IMPEDANCE DISCONTINUITY

The test structure we chose to analyze is the double step-
in-impedance, between two 50 €2 coplanar waveguides, shown
in Fig. 2. A double step was chosen to have 50 £ impedance
match at the two ports. Using the procedure outlined in the
previous sections, we have calculated the charge distribution,
local capacitance and impedance, local reflection and transmis-
sion. coefficients, and the frequency dependent S-parameters
for this structure.

The structure was gridded using rectangular cells with dz =
wy/11 and dz = 2dz. This resulted in a total of 858 cells
on the connecting lines, and 819 cells on the low impedance
line. The static charge distribution was obtained by assuming
V =1 V on the center conductor and V = 0 V on the ground
planes. Fig. 3 shows the 2-D charge distribution. Charge
accumulation at the outer corners of the center conductor
and charge depletion at the inner comers are evident. It is
this perturbed charge distribution close to the junction that
gives us the discontinuity parasitics. The charge distribution is
perturbed over a finite-length close to the junctions, resulting
in frequency-dependent S-parameters. '

Fig. 4 shows the computed capacitance and impedance per
unit length., We can compare these results with the charac-
teristic impedance of the CPW line without the discontinuity,
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Fig. 3. Charge distribution: (a) 2-D and (b) contour plots.

600

using a quasi-static formula from [29]
K(1
o= 30 (1/p) (38)
V €eft K( 1- 1/p2)

where p = 1 + 2g/w, g is the width of the gap, w is the
width of the inner conductor, and K is the complete elliptic
integral of the first kind. For the dimensions given in Fig. 2 the
characteristic impedance of the semi-infinite connected lines is
50 €, while for the low impedance section of line in between
it is 36.6 2 These are the impedance values from Fig. 4 far
from the discontinuity and at z = 0.

The solutions of the Riccati equations are shown in Fig. 5.
The magnitude and phases of 7 (excitation from port 2)
and ¢ (excitation from port 1) along the line are shown for
a frequency of f = 5 GHz. The quasi-TEM mode sees a
small reflection due to the charge perturbation away from
the first junction, and it then experiences a large reflection
from the junction. A second large reflection 7 out of phase
is seen at the second junction, nearly cancelling the reflection
from the first junction. While this behavior is expected and
rather obvious for this particular discontinuity, the solutions
of the Riccati equations can provide useful insight for more
complicated geometries.
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Fig. 6 shows the computed magnitudes and phases of Si1
and So; as a function of frequency. For comparison, we have
included S71; and Ss; calculated with PMESH, a full wave
program developed at the University of Colorado at Boulder
[30] and results from measurements performed on the “in-
house” fabricated circuit using HP8510 Network Analyzer.
In PMESH the electrode gaps are gridded instead of the
electrodes. We used two cells per cross-section on the input
gap and one cell per cross-section on the interior gap. The
total number of cells was 42 in the interior part and 136
on the connecting lines. The comparison is quite good for
frequencies less than 30 GHz. The cause of the large devia-
tions at higher frequencies is not understood at this point. Due
to the large number of cells used in the static analysis, the
total computation time for this case was quite long. However,

by examining Fig. 3 (slow variation of o away from the
immediate neighborhood of the junctions) that the number
of cells could be drastically reduced without significantly
affecting the S-parameter results. Use of symmetry could
further reduce the number of cells.

In either technique, quasi-static or full-wave, most of the
computation time is used for inverting the Greens function
matrix. For the full-wave technique, a matrix inversion is
needed for every frequency point. For the quasi-static approach
only one matrix inversion is needed, and the time needed to
calculate the S-parameters for each additional frequency is
negligible. Therefore, with approximately the same number
of cells for the two approaches, the computation time for
a complete S-matrix frequency plot using the quasi-static
approach should be comparable to the time to compute one
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Fig. 7. - Optical sampling shown in a transverse cross-section of a CPW line.

frequency point using the full-wave program. Also, the time-
domain result can be obtained easily.

VI. ELECTROOPTIC' SAMPLING
Direct electrooptic sampling measurements of circuits on
GaAs substrates can provide 2-D potential distributions
given by

Veos(, 2) = const - / E(z,y,2)- dl 39

where dl is tangential to the path of the probe beam. For
the configuration shown in Fig. 7, the resulting potential
distribution is proportional to the potential difference between
the two surfaces. For sufficiently thick substrates, one could
assume the boitom surface is an equipotential. For such a case,
the line integral of (39) should give the relative spatial (in z
and y) variation of the potential distribution on the top surface
[31]. The measured potential distribution is therefote identical
to within a constant factor, which will be assumed to be zero,
to the transmission line voltage defined in the quasi-TEM
analysis. These measurements can be used to either directly
verify the accuracy of the static potential distributions used in
the analysis, or as input to the algorithm and subsequently used
to compute transmission line parameters and S-parameters.

Hence, electrooptic sampling measurements of the local
quasi-static field distributions combined with the program
developed in this paper can provide measurements of the local
S-parameters. This technique requires very little real estate and
is to a large extent not affected by tae unknown terminations of
the circuit. This is in stark contrast to conventional techniques
of measuring standing wave patterns, which require long
line segments (= A/4) and that the unknown terminations
be deembedded. To explore the feasibility of this technique
we have taken electrooptic sampling measurements on the
structure analyzed in the previous section.

The test structure from Fig. 2 was fabricated on a 400 pym
thick GaAs substrate. The circuit was tested using a wafer
probe station built for electroopiic probing [13]. Fig. 8(a)
shows the measured 2-D potential distribution on a 5 x 5 ym?
grid at a frequency of 5 GHz. For comparison, Fig. 8(b) shows
the: static potential distribution computed from the charge
distribution shown in Fig. 3. Besides some local anomalies in
the measured result, that can be attributed to surface defects
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Fig. 8. Measured (a) and computed (b) 2-D voltage distribution.

on the wafer, and fewer grid points in the theoretical data, the
comparison is quite good.

To check whether we can accurately determine the charge
distribution from the measured potential distribution, and
therefore compute the equivalent transmission line parameters
from the measurements, we first analyzed the 1-D cross-section
problem. Fig. 9 shows the measured and computed voltage
distribution in one cross-section. The comparison is good,
except at the points close to the edges of the center conductor.
The large spikes are most likely due to optical diffraction
effects at the edges. The slightly negative values on the ground
plane can be attributed to the finite substrate thickness {31].
By first eliminating the spikes in the measured potential, we
computed the 2-D charge distribution from the measured data.
Fig. 10 shows the comparison -of the charge distributions, for
one cross-section, calculated from the measured and assumed
potentials. The small ripples in the measured result are due to
fluctuations in the measured conductor potentials. However,
it is the total charge on the center conductor that determines
the local impedance. Therefore, the accuracy of the “mea-
sured” impedance should be sufficienit to obtain accurate
S-parameter results.
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VII. DISCUSSION

In this work, we have applied our method only to two-
dimensional discontinuities in two port structures. In this
section we wish to discuss some of the straightforward gener-
alizations we plan to implement in the software that will allow
us to apply our results to more interesting practical structures.

Clearly, the two port restriction is a serious one. However,
the generalization to multiport structures is not a serious imple-
mentation problem for the presently discussed technique. The
quasi-static solution for the charge distribution can be affected
independently of the number of conductors involved. A real
problem in implementation is identifying the regions within
the circuit which require the full SOR solution as opposed to
those in which the simple one dimensional Maxwell solution
can be used. This is a practical problem, which exists in the
two port case as well. This problem more seriously affects the
computer time necessary to converge to a numerical solution
than our ability to find a solution. The multiport dynamical
solution also becomes more interesting than the two port case.
In the multiport, one must identify the multiple paths. The
Riccati equation technique is ideal for this purpose. Instead of
using the Riccati equation given by (30), one can use coupled
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Riccati equation given by [33]

dF (z)

— =i F(2)+ix B(2) (40)
_d%d_z(z) = zéBE(Z) + ZéBF'E(Z) (41)

where F' and B are n forward and backward waves, ¢ P and
¢ ., are n X n matrices whose real part denotes phase shift per

unit length and whose imaginary part denotes medium gain
or loss per unit length, x FB(X ) is » X n matrix whose

elements denote the amount of each backward (forward) wave
component to get scattered into each forward (backward) wave
component. All of the work presented here assumes an infi-
nite substrate thickness. Green’s functions for finite substrate
thickness can be found, eg. (15). The finite substrate thickness
will have an effect on the charge distribution and capacitance.
In most practical cases the line width and substrate thickness
will be chosen so as to minimize the field value on the back
of the substrate. If the field on the back surface is small, then
the finite substrate correction is small. Unlike in microstrip,
the substrate thickness does not cause dispersion in CPW
lines. CPW lines have a geometrically defined impedance
that is not frequency dependent [35]. Although the simple
effective dielectric constant formula of (14) no longer applies
for the case of a finite substrate, the applicable formula is
still nondispersive.

The correction for finite metallization can be also made,
as was done in works by the microwave metrology group
at NIST [36]. If the metallization exceeds roughly two skin
depths, the loss will increase roughly as the square root of
the frequency [37]. Such effects can be included “by hand”
in such calculations as these presented here. As skin depths
are of the order of 0.5 pm for the frequencies of interest here,
the finite height of the electrodes will have no dramatic effect
on propagation.

Coplanar discontinuities are often 3-D. The most ubiquitous
3-D discontinuity is the airbridge, which must be used in com-
plicated circuits in order to suppress the radiative slot mode in
CPW. Many introductory electromagnetics texts [34] solve the
problem of the Green’s function for a charge above a semi-
infinite dielectric. The quasi-static solution in this case will
require a three dimensional gridding, but the Riccati equations
will still consist of one dimensional coupled equations. Again,
generalization poses no fundamental limitation.

A purpose of this work has been to develop the tools
necessary to calculate (and subsequently verify) the effects of
parasitics on active devices such as MESFETs. Again, in this
case, a quasi-static solution can be found by gridding a region
that includes the electrodes on the top of the active region
and extending out to a point on the coupling lines. To find
the charge distribution it is necessary to define voltages on the
conductors. The transistor characteristics can be used for this
purpose. Iterative use of Riccati equations can be employed
to separate parasitics and intrinsic transistor parameters. This
is the aim of ongoing work.
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VIII. CONCLUSION

We have presented a new technique for obtaining the fre-
quency dependent scattering pararaeters of waveguide discon-
tinuities. Using a quasi-static field analysis, the discontinuity
is transformed into an equivalert nonuniform transmission
line. The scattering parameters ere found by analyzing the
propagation along this line.

The technique is substantially faster than full-wave tech-
niques. The approximations used are the same as the ones used
for the quasi-TEM analysis of uniform nonhomogeneous trans-
mission lines. Therefore, for sufficiently small line dimensions
compared to the wavelength, the zccuracy should rival that of
full-wave techniques. We applied the technique to a double
step-in-impedance discontinuity, computing the S-parameters
up to 40 GHz. These results compared well to the results from
a full-wave analysis of the same structure up to 30 GHz. By
combining the technique with the direct electrooptic sampling
technique, it is shown that one can obtain local S-parameters
from measurement of the local 2-D potential distribution.
While we have only considered passive structures here, it is
the hope that the technique can be extended to include active
devices. This would then provide a technique for finding the
parasitic reactances due to the device electrode geometry.

REFERENCES

[1] M. Goldfarb and A. Platzker, “The effects of electromagnetic coupling
on MMIC design,” Microwave and Millimeter Wave CAE, vol. 1, no. 1,
pp. 38-47, Jan. 1991.

[2] J.M. Dunn and L. C. Howard, “An eificient algorithm for the calculation
of parasitic coupling between lines in MICs,” IEEE MTT-S Digest,
pp. 405-498, June 1992.

[3] C.M. Snowden and R.R. Pantoja, “GaAs MESFET physical models for
process-oriented design,” IEEE Trans. Microwave Theory Tech., vol. 40,
pp- 14011409, July 1992.

[4] F. Filicori, G. Ghione, and C. U. Naldi, “Physics-based electron device
modeling and computer-aided MMIC design,” IEEE Trans. Microwave
Theory Tech., vol. 40, pp. 1333—1352, July 1992.

[5] A.R. Djordjevic, T.K. Sarkar, and Z. Maricevic, “Evaluation of ex-
cess inductance of microstrip discontinuity,” Radio Sci. vol. 26,
pp. 565-570, 1991.

[6] R.N. Simons and G.E. Ponchak, “Modeling of some coplanar wave-
guide discontinuities,” IEEE Trans. Microwave Theory Tech., vol. 36,
pp. 1796—1803, 1988.

[7]1 M. Naghed and I Wolff, “Equ valent capacitances of coplanar
waveguide discontinuities and interdigitated capacitors using a three-
dimensional finite difference method,” IEEE Trans. Microwave Theory
Tech., vol. 38, pp. 1808—-1815, 199).

[8] R. Bromme and R.H. Jansen, “Systematic investigation of coplanar
waveguide MIC/MMIC structures using a unified strip/slot 3-D elec-
tromagnetic simulator,” JEEE MTT Digest, pp. 1081-1084, 1991.

[9] C.W. Kuo and T. Itoh, “Characterization of shielded coplanar type
transmission line junction discontinuities incorporating the finite metal-
lization thickness effect,” IEEE Trans. Microwave Theory Tech., vol. 40,
pp. 73-80, 1992.

[10] Lord Rayleigh, “On the incidence of aerial and electrical waves upon
small obstacles in the form of ellipsoids or elliptic cylinders, and on the
passage of electric waves through & circular aperture in a conducting
screen,” Phil. Mag, vol. 44, pp. 28--52, 1897.

[11] J.C. Maxwell, A Treatise on Electricity and Magnetism, vol. 1, 3rd ed.,
(reprint) New York: Dover, 1954, pp. 294-297.

[12] K.J. Weingarten, M.J. W. Rodwell, and D. M. Bloom, “Picosecond op-
tical sampling of GaAs integrated circuits,” IEEE J. Quantum Electron.,
vol. QE-24, pp. 198-220, 1988.

[13] D.R. Hjelme, M.J. Yadlowsky and A.R. Mickelson, “Two-dimensional
mapping of the microwave potential on MMICs using electrooptic
sampling,” IEEE Trans. Microwave Theory Tech., (submitted).

1533

[14] C.C. Lin and L. A. Segel, Mathematics Applied to Deterministic Prob-

lems in the Natural Sciences, New York: Macmillan, 1974.

G.K. Griinberger, V. Keine, H.H. Meinke, “Longitudinal field com-

ponents and frequency-dependent phase velocity in the microstrip

transmission line,” Electron. Lett., vol. 6, pp. 683—685, 1970.

[16] A.F. dos Santos ard J. P. Figanier, “The method of series expansion in
frequency domain applied to multidielectric transmission lines,” IEFE
Trans. Microwave Theory Tech., vol. MTT-23, pp. 753-756, 1975.

[17] E.F. Kuester and D.C. Chang, Theory of Waveguides and Trans-
mission Lines. University of Colorado, Electromagnetics Laboratory,
1990, Ch. 3.

[18] E.F. Kuester, D. C. Chang, and L. Lewin, “Frequency-dependent defini-
tions of microstrip characteristic impedance,” Digest of Int. URSI Symp.
Electromagnetic Waves (Munich), p. 335, Aug. 26—29, 1980.

[19] J.R. Brews, “Characteristic impedance of microstrip lines,” IEEE Trans.
Microwave Theory Tech., vol. MTT-35, pp. 30—34, 1987.

[20] W.R. Smythe, Static and Dynamic Electricity, 3rd ed. New York:
Hemisphere, 1989, pp. 192-194.

[21] W.P. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,

Numerical Recipes in Pascal. Cambridge: Cambridge Univ. 1989.

R.F. Harrington, Field Computation by Moment Methods. Malabar,

FL: Krieger, 1968.

P.S. Weitzman, J. M. Dunn, and A.R. Mickelson, “An efficient numer-

ical algorithm for the calculation of the electrical properties of coplanar

electrodes in the presence of a buffer layer,” J. Quantum Electron., (to
be published).

[24] M. Kobayashi, “Longitudinal and transverse current distribution on mi-
crostrip lines and their closed form expression,” IEEE Trans. Microwave
Theory Tech., vol. MTT-33, pp. 784—788, 1985.

[25] R.L. Burden and J. D. Faires, Numerical Analysis.
Kent, 1989.

[26] J.R. Pierce, “A note on the transmission line equation in terms of
impedance,” Bell Syst. Tech. J., vol. 22, pp. 263-265, 1943.

[27] L.R. Walker and N. Wak, “Nonuniform transmission lines and reflection
coefficients,” J. Appl. Phys., vol. 17, pp. 1043—-1045, 1946.

[28] W.C. Chew, Waves and Fields in Inhomogeneous Media.

Nostrand-Reinhold, 1990.

K. C. Gupta, R. Garg, and 1.J. Bahl, Microstrip Lines and Slotlines.

New York: Artech, 1979.

[30] S. Petrakos, “Electromagnetic modeling of coplanar waveguide discon-
tinuities,” M.S. thesis, University of Colorado, Boulder, CO, 1991.

[31] I.L. Freeman, D. M. Bloom, S.R. Jefferies, and B. A. Auld, “Accuracy

of electrooptic measurements of coplanar wavegnide transmission lines,”

Appl. Phys. Lett., vol. 53, pp. 7-9, 1988.

S. Barkeshli and P. H. Pathak, “On the Diadic-Green’s function,” IEEE

Trans. Microwave Theory Tech., vol. 40, pp. 140—142, Jan. 1992.

D. L. Jaggard, A.R. Mickelson, “Reflection coefficients of almost peri-

odic slabs,” Applied Physics, Springer Verlag, 194, 405-412, August

1979.

L.C. Shen and J. A. Kong, Applied Electromagnetism. Boston, MA:

PSW, 1987, pp. 356-358.

[35] E.F. Kuester and D. C. Chang, Theory of Waveguides and Transmission

Lines. Course Notes for ECEN 5114, Univ. Colorado, Boulder, CO,

pp. 93-97, 1991.

R.B. Marks and D.F. Williams, Characteristic Impedance Determina-

tion Using Propagation Constant Measurements. National Institute of

Standards and Technology, Boulder, CO, Mar. 1991.

W.H. Haydl, “Experimentally observed frequency variation of the

attenuation of millimeter-wave coplanar transmission lines with thin

metallization,” IEEE Microwave Guided Wave Lett., vol.2, no. 8,

pp. 322324, Aug. 1992.

[15]

[22]

[23]

Boston, MA: PWS-

Von

[29]

(321
(33]

34]

(36]

[37]

V. Radisi¢, photograph and biography not available at the time of publication.

Dag R. Hjelme, photograph and biography not available at the time of
publication.

Aileen Horrigan, photograph and biography not available at the time of
publication.

Zoya Basta Popovié, photograph and biography not available at the time of
publication.

Alan R. Mickelson, photograph and biography not available at the time of
publication.



