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Experimentally Verifiable Modeling of
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Abstract— A general technique for obtaining the frequency-

dependent scattering parameters of open waveguiding structures

is discussed. The first step of the analysis is an iterative solution
for the charge distribution on the electrodes which, in our case,

uses the “straight line” solution, the one first derived by Maxwell,
as the starting value. A calibrated optical sampling technique
allows for dhwct verification of the validity of the quasi-static
charge distribution for structures in whkh the dielectric layers
are also electrooptic. (Common waveguiding dielectrics such as
GaAs and InP are sufficiently electrooptic to yield more than

sufficient signal-to-noise ratios for accurate verification.) In cases

where the quasi-static solution is valid, it is shown that the full

dynamics of the propagation problem can be recovered from

an equivalent nonuniform transmission line, the parameters of
which can be determined from the phase velocity and impedance
distribution defined by the static charge distribution. Here, we

present analysis of planar discontinuities in coplanar waveguides
(CPW), but the method can be modified and applied to include
active devices, as well as three-dimensional discontinuities, such
as airbridges. The method is based on an iterative solution of the
quasi-static charge distribution using successive over relaxation
and the dynamics are introduced via the Riccati equation. Ad-
ditional measurements performed on the “in-house” fabricated

passive circuits using an HP851O Network Analyzer verify the

accuracy of the dynamical part of the method.

I. INTRODUCTION

A LTHOUGH TRANSMISSION line-models of open

waveguide circuits can be quite efficacious, in many

circumstances, real circuits with discontinuous and (possibly)

closely spaced lines will also exhibit parasitic and line-to-line

coupling, and in such cases, transmission line models break

down. The parasitic effect is really caused by interaction of

charge accumulations (largest near charge singularity points),

which affect the continuous Maxwell charge distribution along

the line. Coupling greatly complicates circuit equivalents of

passive lines, while perturbations to charge distribution affect

circuit values. An example of an unexpected result is that of

a double stub tuner [1]. In such a case, however, it appears
a circuit equivalent is available [2]. It is not at all clear that

circuit equivalents even exist in stripline configurations which

do not exhibit strict reciprocity.
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Circuits that one practically wishes to consider usually

contain active elements. In order for active elements to func-

tion at microwave frequencies, their dimensions must be

small compared to the wavelength. The linewidths of the

interconnections of stripline circuits are generally made to

conform to the 50 Q requirement and further to allow one

to couple on and off the substrate. Microstrip lines must,

therefore, be of the order of tens of microns. Although coplanar

lines can scale and have impedances almost independent of

substrate thickness, coupling requirements generally dictate

characteristic dimensions of tens of microns. Due to limited

carrier nobilities, the dimension of a transistor gate length

is on the order of fractions of a micron. Total gate widths

and, therefore, total device lengths are limited to tens (at most

hundreds) of microns. Compactness requires that the external

passive transmission lines taper rapidly down to the (sub)

micron gate lengths. The typical dimensions for a parasitic

coupling length is determined by some number of Iinewidths

(one or two) of the passive line. One can conclude from these

previously described considerations, that an active element is

quite generally strongly parasitically coupled to its feedlines,

and therefore its behavior (both linear and nonlinear) will be

strongly dependent on the details of the local metallization.

Commercial software available at present, generally in-

cludes parasitic using transmission-line circuit models in

conjunction with various discontinuous junction modes that

can be inserted into the transmission lines (see, for example,

the operating manual for HP’s Microwave Design System).

Such software packages generally include active elements

through fitting the S-parameters to an assumed circuit model

of a given complexity (which could include nonlinear circuit

effects) and using this model in an overall circuit model of the

system. Such models are phenomenological and can depend

only weakly on the details of device geometry through the

complex functions (S-parameters) determined for a given set

of bias conditions. There also exist physics based programs

which treat in detail the geometries and doping levels of each

of the internal layers of the active region [3], [4]. Many of

these models are restricted to two dimensions due to excessive

run times. Even those which can run truly 3-D geometry have

problems including the metallization layers. Neither ohmic

nor Schottky barrier contacts, although commonly in use for

decades, are well understood in terms of their effects on

electron streams. If the effect of coupling the internal electron

and hole streams is taken into account at all in a physical

model, it is generally done by including multiple fitting

parameters to fit to a given set of measured S-parameters [4].
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Again, the details of the all-impoltant parasitic couplings due

to the details of the metallization are completely lost in this

process.

There are really two problems hindering progress in the

parasitic modeling area. One relatw to the long computer time

necessary to run either full wave models or physical charge

flow models. Atthough it is generally argued that computer

cycle times will decrease ad infirlitum and therefore floating

point operations per second wil I increase infinitely in the

future, there is a competing effe:t. This effect is related to

the restrictive assumptions that zlready go into the “exact”

modeling techniques. There is a tendency for one to ever

lift limitations on metallization thickness, current producing

geometries, etc. as more computer power becomes available.

Increased program complexity tends to offset increased run

speed. It is not clear what happens to the ultimate predictability

of physical effects.

A second hindrance to progress in the parasitic modeling

arena has to do with the incompal ibility of full wave analysis

with physical modeling of the solid state effects. Above and

beyond the complexity of modelin g of ohmics and Schottkeys

is the problem of trying to use a full wave approach for only a

portion of a fully coupled region. Maxwell’s equations cannot

be solved exactly in such a case. C)ne needs shields to separate

the space into distinct regions or to model the whole of the

coupled space. The physical device models suffer deficiencies

on the other side. These models calculate charge transport

and the local current and voltage effects induced by the

transport. Such analysis ignores totally the effects of external

dc and ac fields induced by parasitic and partially shielded

by complicated metallization and doping distributions.

In this paper, we present a numerically efficient model

which holds the promise for being eventually capable of taking

parasitic into account in active circuits. The present work

concentrates on quasi-static moclels of coplanar waveguide

(CPW) structures. The goal is tc develop a model which is

stepwise experimentally verifiable, and can be used to propa-

gate an electromagnetic disturbance through a CPW structure.

In a future work, we plan to include active devices through

phenomenological models which have been determined from

optical sampling and HP851O measurements used in concert

with this numerically efficient algorithm.

There are many computer aided design (CAD) tools avail-

able for analysis of microstrip cilcuits. One quasi-static tech-

nique for analysis of microstrip cj rcuits is presented in {5]. In

general, quasi-static techniques should be n times faster than

full wave techniques, where n is the number of frequency

points, if both techniques are optimized. Quasi-static tech-

niques are valid up to a certain frequency and this frequency

limit depends on the type of th> coplanar structure and its

geometry. For CPW, the characteristic impedance and effective

dielectric constant depend on the ratio of the widths of the

inner conductor and the gaps ani are almost independent of

the substrate thickness. Therefore, the transverse dimensions

of a CPW can be chosen to be very small compared to

the wavelength. The quasi-static analysis of CPW structures

should be valid even for very high frequencies. CPW offers

several other advantages over corwentional microstrip lines: it

facilitates easy integration of shunt and series circuit elements,

and it eliminates yield limiting backside processing, such

as wafer thinning and via etching. These advantages make

CPW well suited for monolithic microwave integrated circuits

(MMICS), even though their application to present has been

rather limited. This is partly due to a lack of CAD tools

for CPW circuits, as compared with the tools available for

analysis of microstrip circuits. Furthermore, little information

is available in the literature on discontinuity models for

CPW [6]. Even though there are an increasing number of

characterization techniques becoming available [7] – [9], most

of these are based on full-wave analysis which require large

amounts of computer time and memory. Therefore, further

development of simple and accurate modeling tools for CPW

discontinuities is necessary.

The most common experimental verification of the quasi-

static or full wave techniques is based on the use of a network

analyzer. However, /such measurements can yield only terminal

characteristics, giving S-parameters after proper deembedding.

Direct electrooptic sampling [12] can provide much more

detailed information than network analyzer measurements can

alone. Recent advances in electrooptic sampling allow one

to obtain accurate :2-D potential distributions on planar mi-

crowave circuits [13].

The analysis technique presented in this paper was moti-

vated by the 2-D lelectrooptic sampling measurements pre-

sented in [13]. Since our technique uses the 2-D potential

distribution to compute the 2-D charge distribution, direct

electrooptic probing seems to be an ideal tool to use as

a verification of our analysis. The 2-D quasi-static charge

distribution on the discontinuous transmission line is then

transformed into an equivalent nonuniform transmission line.

Since the quasi-static current distribution has zero divergence,

a unique local coordinate system on the center conductor can

be defined from the current field lines and their normals [5].

This defines a curvilinear coordinate system of the equivalent

transmission line. The transmission line parameters are then

expressed in terms of the static charge distribution. The

propagation along the equivalent transmission line, therefore,

recovers the full dynamics of the scattering problem from the

static charge distribution. As the transmission-line problem is a

one-dimensional one, the increase in the computation time due

to this step is negligible compared to the quasi-static solution.

In problems involving waveguiding structures, there are two

natural length scales: the wavelength of the radiation and

the size of the guide. At microwave frequencies, the strip

width of the internal conductors of the guide is generally

much smaller than the wavelength of the guided radiation.

Where this is not the case, the structure could act more as a

radiating structure 1han as a waveguide. In our case the fields

can be well described by a static field analysis [10]. Further,

in the case of an ideal structure, the charge distribution of

approximately static charges is well known from the early

work of Maxwell [11]. Therefore, our analysis starts from

an assumed or measured 2-D potential distribution on the

center conductor and the ground planes of the circuit. Using

a static Green’s function, the surface charge distribution is

found from this potential. The corresponding capacitance is
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then calculated by integrating the

the surface of the inner conductor.

considered as a transmission line,

charge distribution over

For any line that can be

knowledge of either the

capacitance or inductance is sufficient for computing all line

parameters including phase velocity and line impedance.

II. THE QUASI-STATIC APPROXIMATION

The field solution to the discontinuity scattering problem

possesses two scales. Near the discontinuity, the fields vary

rapidly on a scale w, where w is the largest transverse

dimension of the connecting lines, and then vary slowly with

an O(A) scale, where A is the free space wavelength of the

exciting radiation, away from the discontinuity. The presence

of these multiple scales can be used to derive an accurate

approximations to the full wave problem [14].

A. A A4ultiple Scale Expansion

To perform a multiple scale expansion of Maxwell’s equa-

tions, we introduce two scaled coordinates

2 = F/w (1)

~il = ;~ (2)

where k = 27r/Aeff, and &ff is the effective wavelength on

the transmission line. Introducing an expansion parameter

a=kw (3)

we can expand the electric field as [14]

E(r) = E(o) (r-’, 7’”) + aJ?Jl)(?J, T“)

+ ~z~(z)(r~, ~“) + . . . . (4)

A similar expansion is used for the magnetic field. The del-

operator can be written as

v = : [v’ + cm”] (5)

where the primed and double primed operators operate on

r’ and r“, respectively. Introducing the scaled coordinates

and field expansions into Maxwell’s equations and collecting

orders of Q, we obtain a multiple scale expansion of the field

equations. The Oth-order terms (a”) show that J!3(”) and II(o)

satisfy the static Maxwell equations in the coordinate rt.

By introducing a new curvilinear coordinate system defined

by the static field lines, and neglecting all longitudinal field

components in this coordinate system, the first-order terms
(al) show that @O) and ~(o) satisfy the source free Max-

well equations in the coordinate rr’. These equations can be

written as

: (hlEf))‘iYh’hlH~O)
s’ (h2HJ0))‘iYh’h’E~)

(6)

(7)

where hi are the metric coefficients of the curvilinear co-

ordin$e system Ui. The coordinate+ system is chosen such

that ,?7(0) is tangential to dl and H(o) is tangential to d2.

U3 is the coordinate axis normal to the E(o) and H(o) field

lines. Equations (6) and (7) can be transformed to the standard

transmission line equations by defining a line voltage as the

line integral of E(o) from the center conductor to the ground

plane, and a line current as the line integral of H(o) around

the center conductor. The capacitance C and inductance L per

unit length can be computed from the static fields as well.

B. The Quasi-TEM Approximation

By neglecting the longitudinal field components, we have

used the same approximation as in the quasi-static approx-

imation of transmission lines with a nonuniform dielectric

constant. As suggested by our multiple scales expansion, and

as has been shown for uniform transmission lines [15], [16],

for low enough frequencies of operation, the .z components

of E and H fields are small enough to be neglected. A low

enough frequency is defined as a frequency that produces a

wavelength large compared to the transverse dimensions of the

structure, i.e., a small a parameter. We are considering a CPW

structure, for which the inner conductor and the gap width do

not exceed 200 ~m. Since GaAs has a dielectric constant of

about 13 and we are working with the impedances of about

50 Q, frequencies up to approximately 40 GHz will not violate

the quasi-static approximation. For higher frequency operation,

one could decrease the inner conductor and gap width in order

to minimize the radiation loss.

The propagation constant and characteristic impedance of

quasi-TEM lines can be expressed as

(8)

(9)

Since the phase velocity of a TEM mode is always given

by ‘uPh = c/@F, L and C are related by the expression
LC = Kocoeeff, and therefore the knowledge of one of

them is sufficient to determine all line parameters including

the impedance.

Under the qausi-static approximation, an effective dielectric

constant is given by Ceff = C/Co, where C is the capacitance

per unit length of the structure, and Co is the capacitance per

unit length of the structure with air replacing all dielectric

materials. The propagation constant of the line can then

be written

where c is the speed of light in vacuum. The characteristic

impedance of the line can be calculated from

(11)

In the previous discussion we assumed quasi-TEM propa-

gation, but it can be shown that the generalized transmission

line theory holds for non-TEM propagation as well [18], [19].
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In the quasi-static approximation, the 2-D potential distri-

bution V(r) is related to the charge distribution o(r) by

v(T) = 1G(T, T’)o(T’)d2# (12)
s

where G(T, r’) is the static Green’s function for the potential

due to a charge on the surface S of a semi-infinite dielectric

with dielectric constant e, [20]

1 1
G(T, T’) = —–—

47rE@,fr l?’ – ?J[
(13)

where

Qy = + (1 + 6.) . (14)

The Green’s function can be found for many other cases.

In case of the finite substrate thickness the Green’s function

is given by [20]

(15)

where ev is a ,unit vector in y direction and d is the thickness

of the’ substrate. As the Green’s function will be eventually

represented numerically in the computer program, the only real

question as to how it is represented analytically, is how rapidly

this analytical representation can l)e translated to a numerical

one (the matrix filling problem), For cases as complicated

as those of multiple dielectric layers, it can be shown that

extremely efficient matrix filling ;echnique can be developed

[23]. It is our belief that such efficient techniques can also be

found for Green’s function for multiple dielectric layers where

the charges may be located away from the interface [24], that

is cases involving air bridges, etc.

The total area S can be reduced by noting that far away from

the discontinuity the charge distribution will remain essentially

unperturbed by the presence of the discontinuity. The charge

distribution in these areas can thus be assumed to be known.

By dividing the area as shown in Fig. 1, (12) can be written

“xz)=fldz’l;dx” G(x, z’, z, .z’)o(z’, /)

+ V&($, z) (16)

where V.Xt is the potential in the discontinuity region due to

the known charge distribution far away from the discontinuity.

V&t (z, .z) can be expressed as

Vext(z, z) = r dx’ G + :x, d,z)a(z’, –L)
-m

+
/“

dz’ G – (z, d, z)a(z’, L)
—cc

/

–w

-1- dx’ Gw(z> z’, .z)a(m’, –L)
—co

+ /m
dx’ GW(X, cc’, z)c(z’, –L) (17)

-..

Smi.hfinite
Transmission

‘i

z., .L I z=l.

Fig. 1. A coplanar waveguide discontinuity,

where u (x, +L) is the charge distribution per unit length on the

transmission lines connected to the discontinuity, and G& and

Gw are the Green’s functions relating the charge distribution

in the exterior region to the potential in the interior region

Izl < L and IzI < W. These functions are given by

G+(z, z’, z) =

v “ (18)&in (L+z)+ (L+z) +(X–X1)2

Gw(z, z’, Z) =

1
(1. - 2)+ J=+ (z - %’)2

— in —
47rcoEefr

. (19)

(L+ 2)+ J=+ (T - $’)’

In writing [17] we lhave assumed that the charge distribution

for z ~ [–L, L] and Ixl > W’ is equal to O(X, +L) for z >0

and z < 0, respectively. We can now rewrite (16) as

~n’@z)=l;dz’L
dx’ G(~, z’, z, Z’)f7(d, /) (20)

where V,nt = V – I&t is the actual potential on the conductors

minus the potential due to the charges in the exterior region.

The solution of (20) provides the static charge distribution

at the CPW discontinuity. The capacitance per unit length is

computed using [1’7]

Ic(~) ‘= $ inner .ond Io(x, z)ldx (21)

where z is the direction of propagation.

III. NUMERICAL TECHNIQUE

We reduce the integral equation (20) to a matrix equation

by using point matching [22]. The motivation for doing point

matching is the fact that optical sampling measurements give

values for the potential at discrete points. Further, in the case

where we wish to find the charge distribution from the known

voltage distribution on the electrodes, we can always pick the

known voltages to exist at fixed points. We set

v’(r) = ~ ‘un6(T’-- ‘rn)
n

and expand the charge distribution as

.JW n

(22)

(23)
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where ~(r) = rect(z/dz) rect(z/dz) and dx and d.z define

the cell size. The resulting matrix equation takes the form

[V] = [G] [a] (24)

where [o] is the unknown vector which contains the solution

for the charge density and [V] is the vector which contains the

voltages on the electrodes. [G] is the known Green’s function

matrix with elements

nm=~G~;ztZ-) “nG,

( ++++m-m)} ‘=”
(25)

The unknown 2-D charge distribution can now be found by

simply inverting G~,~

[o] = [G]-’ [V] . (26)

The matrix inversion can easily be performed using LU

decomposition. However, since we are dealing with a 2-D

problem the size of the matrix soon becomes very large (an

iV x IV grid results in an N2 x N2 matrix) and large amounts

of computer time and storage are needed.

The problem at hand seems very well suited for more

efficient iteration techniques [21], [25]. The static charge

distribution will often deviate only slightly from a charge

distribution composed of 1-D distributions given by the cross-

sectional line dimensions at every .z coordinate. This distribu-

tion can be used as initial value for an iteration technique. In

order to solve [V] = [G] [a] with a given initial approximation
~(o), we used the Gauss –Seidel iterative algorithm with over-

relaxation (SOR) [25]

(~) = (~ _ Q)o:~-QUi

(27)

where the superscript denotes the iteration number and 0
is a relaxation parameter. If [G] is strictly diagonally domi-

nant, then for any choice of [o(o)] this algorithm gives a

sequence [o(k)] ~=o that converges to the unique solution of

[G] [o] = [V] [25]. Overrelaxation parameter values close to

1.5 resulted in rapid convergence for the particular problem

considered here.

Since we defined the charge distribution using rectangu-

lar functions

c’(z) = ~ U’(xt, Z) (28)

inner cond.

and the TEM impedance follows from (11).

IV. SCATTERING PARAMETERS

With the quasi-static analysis presented above, we have

reduced the problem of propagation in a nonuniform CPW

structure to a one dimensional problem of TEM propagation on

a continuous nonuniform transmission line. The transmission

line equations are easily solved using a number of different

techniques. They can be transformed to Riccati equations

for the reflection and transmission coefficients [26], [27].

Alternatively, they can be transformed to equations for the

forward and backward traveling wave variables and then

solved using transmission matrices for piecewise uniform

transmission lines.

A. The Riccati Equations

By transforming the transmission line equations to Riccati

equations, the scattering parameters of the structure can be

found by solving the Ricatti equations for the reflection T(Z, ~)

and transmission t(z, ~) coefficients [28], [32]

dr (~)=
d.z

-j2~(z)r(z) - (1 - ?-(2)2) d:;:/j)d’

dt (~) – –j~(z)t(z) + ~(~)~(~) dZo (z)/ dz

d.z 2ZO(.Z) “

These equations are solved as initial value problems

initial values T( –L) = O and t(–L) = 1,and integrated

(29)

(30)

with

from

–L to L, to find Sll (~) = T(L, f) and S12(~)-= t(L, f).

The other two matrix elements, SZZ and S21, can be found by

integrating from L to –L with initial values r(L) = O and

t(L) = 1.

The Riccati equations are discretized by approximating the

equivalent nonuniform line with a piecewise uniform trans-

mission line. For this discrete case the Riccati equations are

easily solved by defining the local reflection and transmission

coefficients at a point z = zn _ 1

2.-1 – 2.
‘n = Z.-1 + 2. (31)

(32)

where Zm is the TEM impedance of line section n. The initial

value problems are solved according to

tn =
Tntn–~e~@

1 + pnrn–le~26A

(33)

(34)

where ~ is given by equation (10) and A = .zn—.zn– 1. Region

O is connected to a matched load and we, therefore, have the

initial values To = O and to = 1. The values for the resulting

reflection and transmission coefficients determine the S1l and

S12, respectively. Similarly, starting the integration from the

other port, we can get S22 and S12.

B. Transmission Matrix

If the complete S-matrix is needed, it is perhaps easiest to

transform the problem to a transmission line network with N
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Fig. 2. A CPW test structure, where gl = 86 flm, WI = 120 &m, gz =

46 pm, W2 = 200 flm, and 1 = 500 ~m were the dimensions for the
measured stmcture.

cascaded sections, and use the transmission matrix to compute

the overall S-matrix. The definition, of a T matrix and formulas

for conversion to S-parameters and vice verse can be found

in the literature [29]. The transmission matrix T~ of the ith

section can be written as

The total transmission matrix is then

[T] = ~ [r],.
i

Using the transformation relationship

and T-parameters

(35)

(36)

between S-parameters

[s1 - ;2 [T;’ ‘-;2:’T” ] (37)

the complete S-matrix for the CPW structure can be found.

The reference planes are left at the end of the interior region

(at +L), howeve:, they can be shifted by adding the proper

phase factors.

V. APPLICATION TO THE DOUBLE

STEP-IN-IMPEDANCE DISCONTINUITY

The test structure we chose to analyze is the double step-

in-impedance, between two 500 c:oplanar waveguides, shown

in Fig. 2. A double step was chosm to have 50 fl impedance

match at the two ports. Using th(: procedure outlined in the

previous sections, we have calculated the charge distribution,

local capacitance and impedance, .l~cal reflection and transmis-

sion, coefficients, and the frequency dependent S-parameters

for this structure.

The structure was gridded using rectangular cells with dx =

WI/1 1 and dz = 2 dx. This resulted in a total of 858 cells

on the connecting lines, and 819 cells on the low impedance

line. The static charge distributiorl was obtained by assuming

V = 1 V on the center conductor and V = OV on the ground

planes. Fig. 3 shows the 2-D charge distribution. Charge

accumulation at the outer comers of the center conductor

and charge depletion at the inner corners are evident. It ‘is

this perturbed charge distribution close to the junction that
gives us the discontinuity parasitic. The charge distribution is

perturbed over a finite-length close to the junctions, resulting

in frequency-dependent S-parame ters.

Fig. 4 shows the computed capacitance and impedance per

unit length. We can compare these results with the charac-

teristic impedance of the CPW lirle without the discontinuity,

(a)

-300 L_~”i

– 600 –400 –200 o 200 400 600

x [w]

(b)

Fig. 3. Charge distribution: (a) 2-D and (b) contour plots.

using a quasi-static formula from [29]

(38)

where p = 1 + 2g/w, g is the width of the gap, w is the

width of the inner conductor, and K is the complete elliptic

integral of the first kind. For the dimensions given in Fig. 2 the

characteristic impedance of the semi-infinite connected lines is

50$2, while for the low impedance section of line in between

it is 36.6 Q These are the impedance values from Fig. 4 far

from the discontinuity and at z = O.

The solutions of the Riccati equations are shown in Fig. 5.

The magnitude and phases of r (excitation from port 2)

and t (excitation from port 1) along the line are shown for

a frequency of j := 5 GHz. The quasi-TEM mode sees a

small reflection due to the charge perturbation away from

the first junction, and it then experiences a large reflection

from the junction. A second large reflection T out of phase

is seen at the second junction, nearly canceling the reflection

from the first junction. While this behavior is expected and

rather obvious for this particular discontinuity, the solutions

of the Riccati equations can provide useful insight for more

complicated geometries.
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Fig.4. Capacitance and impedance per unit length along the line.
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Fig.5. Magnitude and phase of reflection and transmission coefficient along the line at ~ = 5 GHz.
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Fig. 6. Magnitude of S11 and Szl are shown in solid line, PMESH full-wave analysis results are shown with a dashed line and network analyzer
measurements are shown in dash dot line.

Fig.6 shows the computed magnitudes and phases of S1l

and S21 as a function of frequency. For comparison, we have

included S11 and S21 calculated with PMESH, a full wave

program developed at the University of Colorado at Boulder

[30] and results from measurements performed on the “in-

house” fabricated circuit using HP851O Network Analyzer.

In PMESH the electrode gaps are gridded instead of the

electrodes. We used two cells per cross-section on the input

gap and one cell per cross-section on the interior gap. The

total number of cells was 42 in the interior part and 136

on the connecting lines. The comparison is quite good for

frequencies less than 30 GHz. The cause of the large devia-

tions at higher frequencies is not understood at this point. Due

to the large number of cells used in the static analysis, the

total computation time for this case was quite long. However,

by examining Fig. 3 (slow variation of a away from the

immediate neighborhood of the junctions) that the number

of cells could be drastically reduced without significantly
affecting the S-parameter results. Use of symmetry could

further reduce the number of cells.

In either technique, quasi-static or full-wave, most of the

computation time is used for inverting the Greens function

matrix. For the full-wave technique, a matrix inversion is

needed for every frequency point. For the quasi-static approach

only one matrix inversion is needed, and the time needed to

calculate the S-parameters for each additional frequency is

negligible. Therefore, with approximately the same number

of cells for the two approaches, the computation time for

a complete S-matrix frequency plot using the quasi-static

approach should be comparable to the time to compute one
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Fig. 7. Optical sampling shown in a transverse cross-section of a CPW line.

frequency point using the full-wave program. Also, the time-

domain result can be obtained easily.

VI. ELECTROOPTIC SAMPLING

- Direct electrooptic sampling measurements of circuits on

GaAs substrates can provide 2-D potential distributions

given by

V. O.(Z, .z) = const .
I

‘E(z, y,z). Zi (39)

where d~ is tangential to the path of the probe beam. For

the configuration shown in Fig. 7, the resulting potential

distribution is proportional to the potential difference between

the two surfaces. For sufficiently thick substrates, one could

assume the bottom surface is an equipotential. For such a case,

the line integral of (39) should give the relative spatial (in %

and y) variation of the potential distribution on the top surface

[31]. The measured potential distribution is therefore identical

to within a constant factor, which will be assumed to be zero,

to the transmission line voltage defined in the quasi-TEM

analysis. These measurements can be used to either directly

verify the accuracy of the static potential distributions used in

the analysis, or as input to the algorithm and subsequently used

to compute transmission line parameters and S-parameters.

Hence, electrooptic sampling measurements of the local

quasi-static field distributions combined with the program

developed in this paper can provide measurements of the local

S-parameters. This technique requires very little real estate and

is to a large extent not affected by the unknown terminations of

the circuit. This is in stark contrast to conventional techniques

of measuring standing wave patterns, tihich require long

line segments (X A/4) and that the unknown terminations

be deembedded. To explore the feasibility of this technique

we have taken electrooptic sampling measurements on the

structure analyzed in the previous section.

The test structure from Fig. 2 was fabricated on a 400 ~m

thick GaAs substrate. The circuit was tested using a wafer
probe station built for electrooptic probing [13]. Fig. 8(a)

shows the measured 2-D potential distribution on a 5 x 5 pm2

grid at a frequency of 5 GHz. For comparison Fig. 8(b) shows

the static potential distribution computed from the charge

distribution shown in Fig. 3. Besicles some local anomalies in

the measured result, that can be attributed to surface defects

“’?J4?$$’-+
(a)

(b)

Fig. 8. Measured (a) and computed (b) 2-D voltage distribution.

on the wafer, and fewer grid points in the theoretical data, the

comparison is quite good.

To check whether we can accurately determine the charge

distribution from the measured potential distribution, and

therefore compute the equivalent transmission line parameters

from the measurements, we first analyzed the 1-D cross-section

problem. Fig. 9 shows the measured and computed voltage

distribution in one cross-section. The comparison is good,

except at the points close to the edges of the center conductor.

The large spikes are most likely due to optical diffraction

effects at the edges. The slightly negative values on the ground

plane can be attributed to the finite substrate thickness [31].

By first eliminating the spikes in the measured potential, we

computed the 2-D charge distribution from the measured data.

Fig. 10 shows the comparison of the charge distributions, for

one cross-section, calculated from the measured and assumed

potentials. The small ripples in the measured result are due to

fluctuations in the measured conductor potentials. However,

it is the total charge on the center conductor that determines
the local impedance. Therefore, the accuracy of the “mea-

sured” impedance :should be sufficient to obtain accurate

S-parameter results.
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Fig. 9. Comparison of voltage distributions, in a transverse cross section,
from measurements and theory.
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Fig. 10. Comparison of charge distributions, in a transverse cross section,

calculated from measured and assumed voltage distributions.

VII. DISCUSSION

In this work, we have applied our method only to two-

dimensional discontinuities in two port structures. In this

section we wish to discuss some of the straightforward gener-

alizations we plan to implement in the software that will allow

us to apply our results to more interesting practical structures.

Clearly, the two port restriction is a serious one. However,

the generalization to multiport structures is not a serious imple-

mentation problem for the presently discussed technique. The

quasi-static solution for the charge distribution can be affected
independently of the number of conductors involved. A real

problem in implementation is identifying the regions within

the circuit which require the full SOR solution as opposed to

those in which the simple one dimensional Maxwell solution

can be used. This is a practical problem, which exists in the

two port case as well. This problem more seriously affects the

computer time necessary to converge to a numerical solution

than our ability to find a solution. The multiport dynamical

solution also becomes more interesting than the two port case.

In the multiport, one must identify the multiple paths. The

Riccati equation technique is ideal for this purpose. Instead of

using the Riccati equation given by (30), one can use coupled

Riccati equation given by [33]

where F and B are n forward and backward waves, ~ ~ and

~ ~ are n x n matrices whose real part denotes phase shift per

unit length and whose imaginary part denotes medium gain

=FB (~~~) is n x n matrix whoseor loss per unit length, x

elements denote the amount of each backward (forward) wave

component to get scattered into each forward (backward) wave

component. All of the work presented here assumes an infi-

nite substrate thickness. Green’s functions for finite substrate

thickness can be found, eg. (15). The finite substrate thickness

will have an effect on the charge distribution and capacitance.

In most practical cases the line width and substrate thickness

will be chosen so as to minimize the field value on the back

of the substrate. If the field on the back surface is small, then

the finite substrate correction is small. Unlike in microstrip,

the substrate thickness does not cause dispersion in CPW

lines. CPW lines have a geometrically defined impedance

that is not frequency dependent [35]. Although the simple

effective dielectric constant formula of (14) no longer applies

for the case of a finite substrate, the applicable formula is

still nondispersive.

The correction for finite metallization can be also made,

as was done in works by the microwave metrology group

at NIST [36]. If the metallization exceeds roughly two skin

depths, the loss will increase roughly as the square root of

the frequency [37]. Such effects can be included “by hand”

in such calculations as these presented here. As skin depths

are of the order of 0.5 Lm for the frequencies of interest here,

the finite height of the electrodes will have no dramatic effect

on propagation.

Coplanar discontinuities are often 3-D. The most ubiquitous

3-D discontinuity is the airbridge, which must be used in com-

plicated circuits in order to suppress the radiative slot mode in

CPW. Many introductory electromagnetic texts [34] solve the

problem of the Green’s function for a charge above a semi-

infinite dielectric. The quasi-static solution in this case will

require a three dimensional gridding, but the Riccati equations

will still consist of one dimensional coupled equations. Again,

generalization poses no fundamental limitation.

A purpose of this work has been to develop the tools

necessary to calculate (and subsequently verify) the effects of

parasitic on active devices such as MESFETS. Again, in this

case, a quasi-static solution can be found by gridding a region

that includes the electrodes on the top of the active region

and extending out to a point on the coupling lines. To find

the charge distribution it is necessary to define voltages on the

conductors. The transistor characteristics can be used for this

purpose. Iterative use of Riccati equations can be employed

to separate parasitic and intrinsic transistor parameters. This

is the aim of ongoing work.



RADI~IC et al.: MODELING OF COPLANAR WAVEGUIDE DISCONTINUITIES

VIII. CONCLUSION

We have presented a new technique for obtaining the fre-

quency dependent scattering parameters of waveguide discon-

tinuities. Using a quasi-static field analysis, the discontinuity

is transformed into an equivalent nonuniform transmission

line. The scattering parameters are found by analyzing the

propagation along this line.

The technique is substantially faster than full-wave tech-

niques. The approximations used are the same as the ones used

for the quasi-TEM analysis of uniform nonhomogeneous trans-

mission lines. Therefore, for sufficiently small line dimensions

compared to the wavelength, the :.ccuracy should rival that of

full-wave techniques. We applied the technique to a double

step-in-impedance discontinuity, computing the S-parameters

up to 40 GHz. These results compared well to the results from

a full-wave analysis of the same structure up to 30 GHz. By

combining the technique with the direct electrooptic sampling

technique, it is shown that one can obtain local S-parameters

from measurement of the local 2-D potential distribution.

While we have only considered passive structures here, it is

the hope that the technique can be extended to include active

devices. This would then provide a technique for finding the

parasitic reactance due to the device electrode geometry.
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